

DJ-003-001618

Seat No.

B. Sc. (Sem. VI) (CBCS) Examination

March-2022

Optimization and Numerical Analysis-II: BSMT-602(A)

(Old Course)

Faculty Code: 003 Subject Code: 001618

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All the questions are compulsory.

- (2) Right hand side digit indicates the mark.
- 1 Answer the following questions in short:

- (1) Write the full form of MODI method.
- (2) The dual of dual is a prime problem. [True/False]
- (3) The unbalanced transportation problem can be balanced by adding a dummy supply row or a demand column as per the need. [True/False]
- (4) LCM is to find initial solution. [True/False]
- (5) What is the special case of Bessel's formula?
- (6) If $f(x) = x^3$, then find f(1, 3, 5, 7)
- (7) Find the value of $\int_{3}^{6} \frac{1}{x} dx$ by trapezoidal rule.
- (8) Which formula is mean of Gauss's forward and Gauss's backward interpolation formula?
- (9) In Simpson's $\frac{1}{3}$ rule what is the form of the function f(x)?

- (10) Divided difference is applicable for interpolation where the arguments are unequal. [True/False]
- (11) An optimum solution does not necessarily use up all the limited resources available [True/False]
- (12) Which type of differential equation can be solved using the Picard's method ?
- (13) State the fundamental theorem of LPP.
- (14) Define: Slake variables.
- (15) Define: Basic feasible solution
- (16) Define: Concave funcation.
- (17) Define: Unbounded Solution
- (18) What is inerpolation?
- (19) State Gauss-Backward interpolation Formula.
- (20) State relation between divided difference and forward difference.
- 2 (a) Attempt any three:

- (1) Maximize $Z = 11x_1 + 9x_2$, Subject to $3x_1 + 2x_2 \le 8$, $2x_1 + 3x_2 \le 7$, where $x_1, x_2 \ge 0$ using graphical method.
- (2) Write the full forms of VAM and NWCM.
- (3) Explain the prime-dual relationship.
- (4) State the general mathematical form of LPP.
- (5) Define: Extreme point and Optimal Solution.
- (6) Give the tabular form of transportation problem.

(B) Attempt any three:

9

(1) Determine an initial solution of the given transportation problem using LCM.

Destination

		D_{1}	D_2	D_3	D_4	Supply
	S_1	21	16	15	3	11
Sources	S_{2}	17	18	14	23	13
	S_3	32	27	18	41	19
	Demand	6	6	8	23	

(2) Find dual of the given LPP.

$$Min Z = 7x_1 + 3x_2 + 8x_3$$

Subject to

$$8x_1 + 2x_2 + x_3 \ge 3$$

$$3x_1 + 6x_2 + 4x_3 \ge 4$$

$$4x_1 + x_2 + 5x_3 \ge 1$$

$$x_1 + 5x_2 + 2x_3 \ge 7$$

and
$$x_1, x_2, x_3 \ge 0$$

- (3) Explain the steps of VAM to find intial solution of transportation problem.
- (4) Explain mathematical formulation of an assignment problem.
- (5) Explain the steps of two-phase method to solve the LPP.
- (6) Explain the steps of Big-M method.
- (C) Attempt any Two:

10

(1) Use penalty method to solve the following LP problem.

$$Min Z = 5x_1 + 3x_2$$

Subject to

$$2x_1 + 4x_2 \le 12$$

$$2x_1 + 2x_2 = 10$$

$$5x_1 + 2x_2 \ge 10$$

and

$$x_1, x_2, x_3 \ge 0$$

(2) Solve the following LPP by using the two-phase simplex method.

Max
$$Z = 2x_1 + 3x_2 + x_3$$

Subject to
 $x_1 + x_2 + x_3 \le 40$
 $2x_1 + x_2 - x_3 \le 10$
 $-x_2 + x_3 \ge 10$
and
 $x_1, x_2, x_3 \ge 0$

(3) Solve the following transportation problem using MODI method.

			ТО		
		W_1	W_2	W_3	Supply
	F_1	2	7	4	5
From	F_{2}	3	3	1	8
1 TOIII	F_{3}	5	4	7	7
	$F_{_4}$	1	6	2	14
	Demand	7	9	18	

(4) Solve the following assignment problem.

Subordinates

(5) Explain steps of Hungarian Method to solve the assignment problem.

3 (A) Attempt any Three:

(1) If $f(x) = \frac{1}{x^2}$, then find f(a, b, c, d).

- (2) Evaluate $\int_{0}^{10} \frac{1}{1+x^2} dx$ by trapezoidal method.
- (3) Give the central differences table for the arguments (1, 1), (2, 4), (3, 6), (4, 10), (5, 17).
- (4) In usual notation prove that

$$D = \frac{1}{h} \left[\Delta \rightarrow \frac{1}{2} \Delta^2 + \frac{1}{3} \Delta^3 - \frac{1}{4} \Delta^4 + \dots \right]$$

- (5) Prove that the value of any divided difference is independent of the order of the arguments.
- (6) Write Lagrange's interpolation formula.
- (B) Attempt any Three:

9

- (1) Evaluate $\int_{1}^{3} x^{2}$ using Simpson's $\frac{3}{8}$ rule.
- (2) Find y_{35} for the data,

x	10	20	30	40	50
у	600	512	439	346	243

- (3) Find y(0.2), y(0.4) and y(0.6) by Euler's method if $\frac{dy}{dx} = 2x + y$, y(0) = 1
- (4) Derive Newton's forward interpolation formulae form divided difference imterpolation formula.
- (5) Derive Simpson's $\frac{1}{3}$ Rule.
- (6) Solve $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$ by Taylor's series method.
- (C) Attempt any **Two**:

(1) If
$$\frac{dy}{dx} = 2e^x - y$$
, $y(0) = 2$, $y(0.1) = 2.010$, $y(0.2) = 2.040$, $y(0.3) = 2.090$, then find $y(0.4)$ correct up to three decimal places applying milne's predictor method.

(2) Obtain the value of f'(90) using Striling's formula for the following data.

	x	60	75	90	105	120
Γ.	f(x)	28.2	38.2	43.2	40.9	37.7

(3) Using Gauss's forward interpolation formula find the value of f(337.5) from the following data.

x	310	320	330	340	350	360
f(x)	2.4914	2.5051	2.5185	2.5315	2.5441	2.5563

- (4) Derive Gauss backward interpolation formula and hance deduce Simpson's 3/8 rule.
- (5) Derive general quadrature formula.